Solutions for Chemical Hydrogen Storage: Hydrogenation/ Dehydrogenation of B-N Bonds

Karen Goldberg and Mike Heinekey
University of Washington
May 16, 2006

Overview

Timeline

- Start: FY 05
- End: FY 09
- 25% complete

Budget

- Total funding
 - \$1.1 M DOE share
 - \$ 0.28 M cost share
- DOE FY05: \$155K(partial)
- DOE FY06: \$ 200 K

Barriers

- Weight and volume
- Efficiency
- Regeneration Processes

Amineboranes offer high H₂ storage capacity in principle, but thermal H₂ release is slow and inefficient. Effective catalysts for dehydrogenation/hydrogenation of BN compounds are needed.

Partners

DOE Center of Excellence for Chemical Hydrogen Storage

Objectives

- To understand the interaction of BN compounds with transition metals
- To develop Platinum group metal(PGM) based catalysts for dehydrogenation and rehydrogenation of BN compounds
- To determine thermodynamic parameters for hydrogenation/dehydrognation
- To develop non PGM catalysts

Ammonia Borane as a H₂ Storage Material

Appropriate Thermodynamics

$$n ext{ H}_3 ext{NBH}_3 ext{ } \longrightarrow ext{ } [ext{H}_2 ext{NBH}_2]_n + n ext{ H}_2 ext{ } \Delta ext{H}_{calc} = 8 ext{ kcal.mol}^{-1}$$

$$[ext{H}_2 ext{NBH}_2]_n ext{ } \longrightarrow ext{ } [ext{HNBH}]_n + n ext{ H}_2 ext{ } \Delta ext{H}_{calc} = -3 ext{ kcal.mol}^{-1}$$

$$[ext{HNBH}]_n ext{ } \longrightarrow ext{ } [ext{NB}]_n + n ext{ H}_2 ext{ } \Delta ext{H}_{calc} = -9 ext{ kcal.mol}^{-1}$$

Near thermoneutral reactions important for reversibility.

Ammonia Borane as a H₂ Storage Material

DOE Storage Targets

	2010	2015
Target wt%	6.0	9.0

Storage Potential of Ammonia Borane

H ₂ Released	1	2	3
Wt% H ₂	6.5	13.0	19.6
Product	$[H_2NBH_2]_n$	$[HNBH]_n$	$[NB]_n$

Dehydrogenation of Ammonia Borane

Thermal

$$H_3NBH_3$$

$$\begin{array}{c} -H_2 \\ H_2B \\ H_2 \\ H_2 \\ H_2B \\ N_1 \\ H_2 \\ H_3 \\ H_2 \\ H_3 \\ H_4 \\ H_5 \\ H_6 \\ H_6 \\ H_7 \\ H_8 \\ H_8$$

Wang, J. S.; Geanangel, R. A. *Inorg. Chim. Acta* **1988**, *148*, 185.

Catalyzed

$$H_3NBH_3$$
 [Rh] H_1 H_2 H_3NBH_3 [Rh] H_3 H_4 H_5 H_6 H_8 $H_$

Approach

 We seek to develop catalysts to accelerate dehydrogenation/rehydrogenation of amine boranes, eg.

$$n \text{ NH}_3 \text{BH}_3 = \frac{[\text{catalyst}]}{[\text{NH}_2 \text{BH}_2]_n} + n \text{ H}_2$$

Results: Catalyst Choice

$$n NH_3BH_3 \xrightarrow{\text{[catalyst]}} [NH_2BH_2]_n + n H_2$$

- (POCOP)Ir(H)₂ already known to be an effective alkane (transfer) dehydrogenation catalyst.
- Amineboranes are isoelectronic with alkanes.

Evolution of Hydrogen

Characterization of Solid Product

$$n \text{ NH}_3\text{BH}_3 \xrightarrow{\text{[catalyst]}} \text{[NH}_2\text{BH}_2]_n + n \text{H}_2$$

solid

- Single well characterized non-volatile product
- All other reported reactions of this type lead to mixtures including borazine

Comparison with Previous Best Catalyst

	[Rh(1,5-COD)(µ-Cl)] ₂	$O - P^{t}Bu_{2}$ H $O - P^{t}Bu_{2}$
Catalyst Loading	0.6 mol%	0.5 mol%
Temperature (°C)	45	25
H ₂ evolved (equiv.)	2	1
Products	Borazine	$[H_2NBH_2]_5$
Time	48 – 84 hr	< 15 min

At least 200 fold increase in reaction rate over previous best.

 Eventually, the Ir catalyst converts to a dormant form:

Future Work

- In collaboration with PNNL, use calorimetry to accurately measure the heat of reaction for the dehydrogenation reaction. This is critical to validate computational work and to evaluate reversibility.
- Explore ligand variations with Ir for better catalysis.
- Define the mechanism of the reaction; use mechanistic insight to guide catalyst development
- Study rehydrogenation reactions.
- Develop non PGM catalysts with less expensive metals such as Fe, Co and Ni.

Summary

- We have developed an extraordinarily active dehydrogenation catalyst with activity orders of magnitude greater than the prior art.
- The catalyst is well defined and active indefinitely in the presence of hydrogen.
- In contrast to previous reports of complex mixtures, our Ir catalyst gives a single nonvolatile BN containing product.

Backup Data: Characterization of Solid Product

$$n \text{ NH}_3 \text{BH}_3 \xrightarrow{\text{[catalyst]}} \text{[NH}_2 \text{BH}_2]_n + n \text{ H}_2$$

- Solid state ¹¹B NMR.
- Infrared spectroscopy.
- Powder X-ray diffraction.

$$n = 5$$

Fig. 5. 11 B MAS NMR spectra of the three polymers recorded at 9.4 Fig. 8. Schematic representation of the three polymers structures, based on NMR results.

Solid State ¹¹B NMR of [BH₂NH₂]₅

	Bond Length (Å)
Ir(1)-B(1)	2.185(9)
Ir(1)-P(1)	2.3137(14)
Ir(1)-P(2)	2.3122(14)
Ir(1)-C(1)	2.032(4)

IR spectrum of (POCOP)IrH(BH₂)

Initial Rates

Publications and Presentations

Paper on the Ir catalyst submitted to J. Am. Chem. Soc.

Critical Assumptions and Issues

- Computational work suggests that the hydrogenation/dehydrogenation of BN compounds is reversible. This needs to be verified by experiment. Thermodynamic data for these complexes is very limited.
- The formation of volatile borazine must be avoided for fuel cell applications. Most catalysts generate mixtures including borazine.
- The cost of amine borane must be brought down.